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NO~~CLAT~~ 

E,,, spectral black body emissive power : 
E,. exponential integral function of order n: 

k. thermal conductivity : 
k,, radiative conductivity defined by equation (14) : 
4w radiative flux : 
q,,,, total heat flux : 
7: temperature: 

a, spectral dependence of the absorption coefficient : 
/i3 state dependence of the absorption coefficient : 
E, emissivity ; 

ICY. Rosseland mean absorption coefficient : 
i3, dimensionless temperature, T T2. 

P. reflectivity : 
1’. frequency. 
r. optical depth, @(y) dy : 

t This work was supported under the Advanced Research 
Projects Agency Institutional Grant SD-102. 

rO. optical thickness, &@(y) dg. 

Superscript 
* . dimensionless quantity. 

Subscript 

1. denotes the ith band : 
1, denotes the cool boundary : 
2. denotes the hot boundary. 

INTRODUCTION 

As A RESULT of intensive study, considerable progress has 
been achieved over the past decade in understanding energy 

transfer by combined conduction and radiation in semi- 

transparent media. Rigorous analyses of radiative transfer 

characteristically involves either an integral or integrodif- 

ferential equation which must be solved numerically as the 
applicable energy equation, since the radiative flux possesses 
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an integral representation. Several approximations such as 

the diffusion, differential, substitute kernel, matched asymp- 

totic expansions and others have been used to approximate 

radiative transfer in gray media. Many of these lose their 
simplicity and utility when extended to nongray media. Con- 

siderable attention has also been given to the “effective” 

conductivity of radiation with only limited success [I]. 

The purpose of the present paper is to reexamine the series 

expansion of the emissive power to develop a workable radia- 

tive conductivity for conduction-radiation problams with 

reflecting boundaries and non-gray participating media. The 

method was suggested by Viskanta [2] and thoroughly 

investigated and discussed by Taitel and Hartnett [3] for 

a gray medium bounded by black walls. This approach 

results in an approximate solution of a physically rigorous 

formulation and is advantageous over a numerical or 

approximate solution of a physically approximate problem. 

Furthermore, the utility of the method is that it can be 

applied not only to the planar but to other geometries, 

boundary conditions and absorption spectra. The present 

work has been motivated by the need to predict in a simple 

yet accurate manner heat transfer by combined conduction 

and radiation in semitransparent solids. 

In the analyses [2,3] the first three terms of the Taylor 

For the absorption characteristics of the medium a number 

of models such as the exponential wide band [6] and 

rectangular model [4] have been employed. In this study the 

spectral absorption coefficient will be represented by the 

Milne-Eddington model 

K,(n = a(v) p(T) (1) 

with the spectral dependence, a(v) = ai, vi _, < Y 5 vi, which 

is typical of an amorphous solid [7]. The boundaries of the 

medium are diffuse, isothermal walls at temperatures Tr and 

T2 having emissivities sli and szi The steady state energy 

balance for combined conduction and radiation in the 

absence of heat sources can be written in the dimensionless 

form 

_ 4N d8,dT + q: = q: (4 

with the parameter N = kp:4uT’: physically representing 

the ratio of the conduction to optically thick radiant transfer. 

Conduction assures the continuity of temperature at the 

walls ; the boundary conditions are then 

W) = B,, e(r,) = 82. (3) 

The radiative flux is given by 

and 

where 

n 

c slilA6i) {E&r) 2G%(airo)Fs[c& - - G,(T) 2 411 = 

1 - 4p,g&(airo) 
i= 1 

(4) 

(5) 

H(~, t, e) = 2 

series expansion are retained in order that the boundary 

conditions of the differential energy equation may be satis- 

fied. The choice of the number of terms to be retained is 

arbitrary and can not be determined a priori since general 

solutions for conduction-radiation problems are not avail- 

able. Comparison with exact solutions is the only means of 

determining the validity of a given truncation. (t - ry d2e4 
e'(t) = e'(t) + (t - T) $ _ + 2 dt2 + (8) 

I--I t=r 
ANALYSIS 

To illustrate an alternate series expansion approach An approximation to the radiative flux is obtained by 
consider a planar layer of a nongray participating medium. substituting the first two terms of equation (8) into equation 

in which r,(0) is the fraction of the total emissive power within 

a band and is readily obtained by integrating Planck’s 

function over the band. 

The emissive power may be expanded in a Taylor series 

about the optical depth which in one dimension has the form 



1218 SHORTER COMMUNICATIONS 

(4) and performing the integration with the result 

q:(r) = @;G,(r) - f?:G,(z) + @If&. 6) + 4ti3H,(t. 8) d@dr 

(9) 

where 

t E,[a,(r, - T)] + E,(a,r) - f + 2~~~)i-: 
1st , 

- ai(rO - ~)E,(cr,r~) - E,&$s,) - y 
1 

~ztG,(a,r) + 2 -____ 
C,,li(Q,) 

1 

i-- 

a,(r, - r) 
3 

a,tE&,t,) - E,(a,r,) - ----.-‘- 
2 

(11) 

and 

(12) 

This result is not equivalent to the approximation of the 
radiative flux divergence in the differential energy equation 
by a three-term expansion [2.3]. The energy equation then 
becomes 

- 4N(l - k:): = q: - 04H&, 6) - @:G,(z. 0) + @G,(z) 

(13) 

where an effective ~onductivi~ for radiation 

k: = 4B3H,(r, @/iv 

has been introduced. 

(14) 

The two-term Taylor series expansion of O4 has resulted in 
a diffusion formulation with heat sources and sinks for the 
radiative transfer. This simplification is not possible when 
additions terms are retained Numerical solutions can be 
obtained by any of a number of standard techniques with 
thetotal heat flux,& beingdeterminedsuch that theboundary 
conditions are satisfied. The heat flux is then a direct result 
of the computational procedure. 

RADIATIVE C~ND~CTIVI~ 

By employing the Taylor series, a meaningful definition 
of a radiative conductivity which includes spectral, geo- 

metric and wall effects is possible. In the optically thick limit 
with the absence of walls this conductivity reduces to the 
classical radiative conductivity, k, = 160T3!3h-,. When 
the medium is transparent in the jth band, Hij = Hzj = 0. 

Gij = &~,~~jI~~e,)/l - PljPzj and Gzj = Elj&2jfj@Jl - Plj 
pzf The radiative flux predicted by equation (9) is then 

I,om - ~,(w+ 
qF = (li&ij) + (l!EZj) - ‘i 

(15) 

Following the procedure presented in the analysis “effective’* 
~onductivities may be derived for other geometries. Many 
of the objections to the conductivity concept are therefore 
eliminated. 

DISCUSSION OF RESULTS 

To examine the validity of this approach and to compare it 
to a three-term series, conduction and total heat flux results 
are presented for black walls in Table 1. It is seen that the 
total heat flux is predicted accurately with the largest error 
being approximately 7 per cent for the radiation dominant, 
self-absorbing case. This is the more critical case since the 
conductivity correctly reduces to the optical!y thick and 
transparent limits as well as the conduction domin~t limit. 
Under this condition. the accuracy is increased by an order 
of magnitude as compared to the direct application of a three- 
term expansion. 

Although temperature distributions are not presented 
here, they were found to deviate more from the exact results 
than the profiles presented by Viskanta [2]. The error in the 
temperature is readily apparent in the conduction results. 
When radiation is the predominant mode of energy transfer, 
either approach is in error since significant higher order 
terms in the expansion have been neglected. It is of interest 
to note that the conductivity concept can predict conduction 
more accurately than the three-term series as is the case for 
large optical thicknesses. 

As the emissivity is decreased the total heat flux is again 
predicted accurately in the optically thick and thin regimes 
and in conduction dominant cases as shown in Table 2. No 
general correlation can be found but the error increases 
with increasing emissivity when the radiation mode is 
dominant. When the wal!s become highly reflective the effect 
of radiative transfer makes the temperature more uniform 
in the center of the medium resulting in steep gradients near 
the walls. This being the case, inaccurate temperature 
profiles are predicted due to the series truncation as is clearly 
demonstrated by the conduction heat transfer results. 

To examine the conductivity approach as applied to a 
nongray medium the short wavelength (model A) and iong 
wavelength (model B) window models of Crosbie and Vis- 
kanta [4] with black boundaries were selected because exact 
results are available. Heat transfer results for these models 
are presented in Table 3. The total heat transfer is predicted 



SHORTER COMMUNICATIONS 1219 

Tab/e 1. Comparison of series expansion approximations for a gray medium bounded by black walls; 9i = 0.5, Oz = 1.0 

N 
r0 =@l Ts = 1.0 r0 = 10.0 

- 4N d0/dr( ,, q”,‘oT: -N d0 drl, qw/oT; - 4N doids 0 q&T: 

(1) 0.2460 1.0799 0.1018 @5675 0.0244 0.1131 
@Ol (2) 02740 (@114)t 1.0817 (@002)t 00903 (0.113) @6064 (0.069) 0.0156 (0.361) 0.1173 (0.037) 

(3) 025 (0.016)t 1.08 (O.O)t 0106 (OQ41) 0.958 (@688) 00129 (@471) 0.0291 (0.742) 

(1) 2.048 2880 03651 0.7694 @0749 01335 
0.1 (2) 2,082 (QO16) 2.883 (CO) 04270 (0.170) 0.7795 (0013) 00739 (0,013) 0.1355 (0.015) 

(3) 2.05 (OQOl) 2.87 (0.003) 0,377 (0.033) 0848 (0102) 0,074 (@012) 0131 (0018) 

(1) 20.05 2@88 2.203 2.572 0.2856 0.3150 
1.0 (2) 20.08 (0002) 2088 (00) 2,296 (@042) 2.508 (0025) 0.2914 (0,020) @3156 (0,002) 

(3) 20.1 (CJ.003) 209 (OQOl) 1.88 (@147) 2.23 (@133) 0286 (OQOl) @315 (0.0) 
(1) 2Wl 200.9 2021 2057 2.093 2,115 

10.0 (2) 2Wl (@O) 200.9 (0.0) 2031 (0.005) 20.58 (CO) 2.098 (0002) 2.115 (0.0) 
(3) 200 (@O) 201 (0.0) 20.3 (0005) 20.6 (OGOl) 2.09 (0001) 2.11 (0,002) 

(1) Exact numerical results [Al. 
(2) Predicted by equation (13). 
(3) Direct three-term expansion [3]. 
t Numbers in parentheses are the ratio of the difference of approximate and exact results to the exact results. 

Table 2. Eflect ofthe surface emissioity with a gray medium; El = Ez, e1 = 0.5, 02 = 1.0 

To = 0.1 To = 1.0 r0 = 100 
N E - 

-4N d6/dr\ ,, q&T:: - 4N de/dr] ,, q&T’: - 4N d0/dr) 0 q&T: 

0.01 0.5 @2713 (1,331)t 0.5312 (1.014)t 0.1091 (5,452) 0.3894 (1,152) 0.0211(1@567) 0.1090 (1.048) 
0.1 @2506 (1.251)t 0.2788 (1.044)t @1450 (7.239) @2178 (1.396) @0497(24875) 0.0911 (1,012) 

01 @5 2,078 (1.039) 2.332 (1.000) 04282 (2.144) @5698 (1.247) OwO9 (4543) 0.1288 (1,056) 
0.1 2.052 (1.026) 2.079 (1000) 0.3958 (1,979) 04172 (1.062) 0.1096 (5.477) 01187 (1.032) 

1.0 0.5 20.08 (1.004) 2@33 (10X) 2.270 (1.136) 2.370 (0.989) 02980 (1.491) 0.3104 (1,011) 
@l 20.05 (1.003) 20.08 (1QOO) 2212 (1,106) 2.225 (0991) 0.3027 (1.514) 0.3053 (1.028) 

10.0 0.5 20@1 (1.001) 200.3 (1000.) 20.28 (1.014) 2037 (0,999) 2.101 (1.050) 2,110 (1wO) 
01 200.1 (1.001) 200.1 (1.001) 20.21 (1000) 2@22 (@999) 2.104 (1,052) 2,106 (1WO) 

t Numbers in parentheses are the ratio of approximate to exact results [S]. 

Table 3. Series expansion results for a nongray medium; E = l.O,ei = @5,8, = 1.0 

rD =Ol Tg = 1.0 To = l@O 
N Model - 

-4N de/drl,, q&T’: -4N de/dr( a %vw? - 4N de/drl a q&T’: 

001 A 0.2202 (0.033)? 1.1170 (@o)t OQ446 (@174) @8301 (0012) 00061 (@456) 0.6420 (@002) 
B 0.2580 (@102)t 1.1021 (@OOl)~ 0.1372 (0.513) @7321 (0027) 00236 (@018) @4148 (0005) 

0.1 A 2.021 (OQO4) 2,917 (0.0) 0.2672 (@056) 1.0075 (OQOl) 0.0383 (0.036) Q6600 (0001) 
B 2.061 (OGOS) 2.903 (@O) 04002 (0.216) 09070 (0.003) 0.0769 (@130) 04331 (0002) 

1.0 A 2@02 (0.003) 2092 (@O) 2.081 (@Oil) 2807 (0.0) a2279 (@006) @8401 (00) 
B 2007 (0002) 2@90 (@O) 2.221 (0.034) 2.711 (OQO3) 0.2679 (@017) @6130 (OflOl) 

l@O A 2wo (0.0) 200.9 (0.0) 20.08 (0001) 2081 (0.0) 2,029 (0001) 2640 (0.0) 
B 2001 (CO) 2W9 (0.0) 2022 (@003) 2071 (OQO3) 2.069 (OQO2) 2,413 (00) 

t Numbers in parentheses are the ratio of the difference of approximate and exact results to exact results [4]. 
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to within less than 3 per cent error over the entire range 
covered. Since the absorption spectrum contains trans- 1, 
parent regions in which radiation does not influence the 
temperature profile, the improved accuracy is to be expected. 
This finding is significant since it demonstrates that results 2. 

of engineering accuracy for realistic materials can be 
predicted. 

CONCLUSIONS 

The two-term Taylor series expansion of the emissive 
power has been shown to be an accurate and useful method 
for the prediction of the net heat transfer for combined 

4, 

radiation and conduction. The approximation leads to a 
meaningful definition of the radiative conductivity which is 5. 
extremely useful when radiation is coupled with other modes 
of heat transfer since the radiation can then be treated as a 
diffusion process with heat sources and sinks This “effective” 
conductivity has a wider range of applicability than the 

6, 

classical radiative conductivity since it accounts for spectral 
as well as wall effects and is exact in the transparent and opti- 7 
caliy thick limits. It has been shown to accurately predict 
the total heat flux under a variety of boundary conditions and 
for nongray as well as gray media. 
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NOMENCLATURE 

acceleration due to body forces: 
tilm Reynolds number 4i’jp, : 
local liquid film velocity ; 
u/u, : 
shear velocity (~,/p~)*; 
interfacial shear velocity (.riipL)f ; 
distance from wall ; 
Y~,iv,; 

‘I, non-dimensional film thickness &a/‘$)+ ; 
PO dynamic viscosity of liquid; 

YL, kinematic viscosity of liquid : 
pL, pv, density of liquid and vapor respectively : 
7w wall shear; 
Tjr interfacial shear. 

INTRODUCTION 

shear parameter (u3 i;av$ ; * A COMMON feature of many two phase processes involves 
mass flow rate per unit wetted perimeter ; the transport of heat or of mass across a flowing thin liquid 
mean film thickness ; film. One may cite climbing film evaporators, condensers, 
non-dimensional film thickness Su,/v, ; boiling-water nuclear reactors and some desalination 


